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Abstract There is a systematic approach to the computation of quasi-steady state
reductions, employing the classical theory of Tikhonov and Fenichel, rather than the
commonly used ad-hoc method. In the present paper we discuss the relevant case that
the local slow manifold (in the asymptotic limit) is a vector subspace, give closed-form
expressions for the reduction and compare these to the ones obtained by the customary
method. As it turns out, investment of more theory pays off in the form of simpler
reduced systems. Applications include a number of standard models for reactions in
biochemistry, for which the reductions are extended to the fully reversible setting. In a
short final section we illustrate by example that a QSS assumption may be erroneous
if the hypotheses for Tikhonov’s theorem are not satisfied.

Keywords Slow-fast dynamics · Singular perturbations · Michaelis–Menten
reaction

1 Introduction

The mathematical description and analysis of reacting systems in chemistry and bio-
chemistry frequently leads to a slow-fast separation for the associated differential
equations. This slow-fast separation may involve slow and fast reactions or, frequently,
slow and fast variables (i.e. concentrations). The first case leads in a natural way to
“small parameters”, viz. small rate constants for the slow reactions (see e.g. Schauer
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and Heinrich [14], Stiefenhofer [17]). In the latter case one speaks of quasi-steady
state (QSS) for the slow variables. Here, identifying small parameters from a quasi-
steady state assumption is nontrivial, and it is not obvious whether QSS hypotheses
will always lead to small parameter conditions. However, this holds in many relevant
settings, and in the present paper we will consider a system involving a small parameter.

The principal purpose of this paper is to propose that QSS reductions should be
computed in a way different from the commonly used direct (“ad hoc”) approach, and
to illustrate how this can be done. As an additional benefit, this alternative approach
will yield simpler reduced equations in many cases.

In the ad hoc QSS reduction certain rates of change (for certain variables desig-
nated “slow”) are set equal to zero. Examples for this ad hoc approach can be found in
standard textbooks like Atkins and de Paula [1], and Berg et al. [2]. In the monographs
by Keener and Sneyd [8] and Murray [9], scaling and singular perturbation theory act
as guidelines, but effectively this may lead to ad-hoc computations.

There are two main reasons for choosing an approach that is more closely tied to
the singular perturbation theory of Tikhonov [18], Fenichel [5] and others. From a
mathematical perspective, a procedure which invokes the theory not just as a prin-
ciple but as a toolkit for actual computations, ensures consistency and takes care of
convergence problems. From a purely pragmatic perspective the systematic approach
via Tikhonov and Fenichel is preferable because the reduced equations generally are
easier to compute and to handle than those obtained by the ad-hoc procedure. This
includes possible applications to parameter identification. (One may ask how relevant
all this still is in view of software packages that perform such tasks automatically. But
one should keep in mind that the existence of small parameters may seriously affect
the accuracy of identification, and that it is preferable to start with an appropriately
reduced system.)

A straightforward application of Tikhonov’s theorem (see e.g. Verhulst [20], The-
orem 8.5) to a QSS scenario is generally impossible since the theorem applies to
systems in a certain standard form. This fact may have been one reason for Segel and
Slemrod, in their extensive study [16] of the Michaelis–Menten reaction, to derive and
prove asymptotic properties directly. On the other hand, all the necessary groundwork
for the computation of a reducing map was laid by Fenichel [5]. Schauer and Hein-
rich [14] used the singular perturbation approach for slow and fast reactions, citing
Vasil’eva [19] and explicitly using a linear transformation to Tikhonov standard form.
In Heinrich and Schuster [7], Chapter 4, one finds a clear statement of Tikhonov’s
theorem, and the necessity to transform a given system to standard form is pointed
out. But in applications (in contrast to [14]) the authors use singular perturbation
arguments only to simplify certain expressions for reaction rates, and stop short of
determining explicit reduced differential equations. (Similar remarks apply to Keener
and Sneyd [8].) Duchêne and Rouchon [4], and Stiefenhofer [17] directly appeal to
Fenichel’s results and use them to determine reduced equations for particular systems
from chemistry and biochemistry. A general approach to the explicit computation of
Tikhonov-Fenichel reductions, which was recently presented in [12], leads to a reduced
system with rational right-hand side whenever the original system has a polynomial
or rational right-hand side. In particular, reduction of equations for chemical reactions
with mass action kinetics will yield equations with rational right-hand side.
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In Sect. 2 of the present paper we discuss in detail the practically important case
that the local slow manifold, in the asymptotic limit, is a (vector or affine) subspace:
Computing the reduction is still nontrivial but in this scenario there is an efficient short-
cut for the necessary computations, and the structure of the reduced system becomes
transparent. The main result is Theorem 2, which provides a readily applicable for-
mula for the computation of a reduced system. In particular this provides insight under
what conditions Tikhonov-Fenichel reduction and the ad-hoc method will yield the
same reduced system (e.g. in several relevant cases when certain reactions are irre-
versible), and under what conditions the reduction procedures provide different results
(e.g. when fully reversible versions of the above systems are considered). A reader
interested mostly in applications may skip the mathematical arguments and directly
turn to Theorem 2.

In Sect. 3 we will apply our results to a number of reaction equations of practical
interest. We purposely choose standard examples, mostly from Keener and Sneyd [8],
because even for these the approach presented here yields new results. To our knowl-
edge, the general form of the reduced systems in the reversible settings has not been
available in the literature so far.

In a final section we briefly discuss, for the relevant example of reverse quasi-steady
state (rQSS) in the Michaelis–Menten system, the importance of the hypotheses in
Tikhonov’s and Fenichel’s theorems for QSS. It turns out that time scale heuristics
may erroneously suggest QSS in some settings.

2 QSS reduction to subspaces

This section contains the mathematical groundwork and the main results. We introduce
the setting and notation first: Consider a differential equation with analytic right-hand
side, depending on a (“small”) parameter ε:

ẋ = h(x, ε) = h(0)(x) + εh(1)(x) + · · · , x ∈ U ⊂ R
n+m . (1)

Here both n and m are positive integers. The right hand side may depend on additional
parameters; these will usually be suppressed in the notation. The subset U of R

n+m

is assumed to have nonempty interior, and h will be defined in some neighborhood of
U × [0, ε0], for some positive ε0.

The most relevant application in our context will be to differential equations which
model chemically reacting systems with mass action kinetics. Hence the right-hand
side of (1) will be polynomial or even, if only first and second order reactions take
place, polynomial of degree ≤ 2. But the main results will be stated and proven in a
general framework.

In the following, let Y be the zero set of h(0).

Basic assumptions.

(i) There is an y0 ∈ Y and a neighborhood M0 of y0 in Y such that Dh(0)(y) admits
the eigenvalue 0 with geometric and algebraic multiplicity n, for all y ∈ M0.
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(ii) Moreover, there is a constant μ > 0 such that for every y ∈ M0 the remaining
eigenvalues of Dh(0)(y) have real part ≤ −μ.

By the implicit function theorem and linear algebra one sees:

Lemma 1 If basic assumption (i) holds then M0 is a local submanifold of dimen-
sion n. Moreover, R

n+m is the direct sum of kernel and image of Dh(0)(y), for every
y ∈ M0.

We denote by πy the projection onto the kernel of Dh(0)(y) with respect to the
kernel-image decomposition.

The following result on asymptotic reduction goes back, in principle, to Fenichel
[5]; see [12] for a more extensive account.

Theorem 1

(a) Given the basic assumptions (i) and (ii) there exists a reduced system for (1) on
M0, in the sense of Tikhonov and Fenichel. Thus, there is a neighborhood of x0
in U and T > 0 such that every solution of the time scaled version

ε−1 ẋ = h(0)(x) + εh(1)(x) + · · ·

of (1) starting in this neighborhood converges to a solution of the time scaled
reduced system on the interval (0, T ), as ε → 0.

(b) The reduced system on M0 (with no time scaling) is given by

ẋ = ε · p(x), with p(x) = πx (h
(1)(x)).

As was pointed out in [12], one can explicitly compute this projection of h(1)(x)

onto the kernel along the image of Dh(0)(x), with x ∈ Y . The procedure proposed
in [12] starts from the minimum polynomial of Dh(0)(x), and leads straightforwardly
to the reduced system, albeit possibly at considerable computational expense. Exam-
ples show that the procedure is feasible at least for low-dimensional systems. But the
question remains whether computations can be facilitated at least for special classes
of systems. Moreover, other approaches may provide more insight into the structure
of the reduced system.

In the present paper we will resolve the problem of efficient computation and struc-
tural insight for the case that M0 is (a relatively open subset of) a subspace of R

n+m .
While this is a rather simple setting, it already poses nontrivial problems, and it is of
substantial interest for many QSS reductions in biochemistry.

We start with some preparations.

Lemma 2

(a) Up to a linear (resp. affine) coordinate transformation, every n-dimensional vec-
tor subspace (or affine subspace) V of R

n+m can be represented by the equations
y = 0, with

(
x
y

)
∈ R

n+m, y ∈ R
m .
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(b) Given the setting of part (a), any (polynomial or analytic) vector field q on R
n+m

for which every point of V (near 0) is stationary has the form

q

(
x
y

)
=

(
B(x)y + ∑

|i |≥2 bi (x)yi

A(x)y + ∑
|i |≥2 ai (x)yi

)
.

Here we employ the standard abbreviations

i = (i1, . . . , im) ∈ N
m
0 , |i | = i1 + · · · + im, yi = yi1

1 · · · yim
m ,

moreover A and B are analytic matrix-valued functions of x, and ai , bi are
analytic vector-valued functions of x, each of appropriate size.

(c) The matrix Dq(x, y) satisfies the basic assumption (i) in a neighborhood of 0
if and only if A(0) is invertible, and it satisfies the basic assumption (ii) in a
neighborhood of 0 if and only if all eigenvalues of A(0) have negative real parts.

Proof Part (a) is linear algebra, while part (b) follows directly from rearranging the
power series expansion and using q(x, 0) = 0. Finally, part (c) is a consequence of

Dq(0, 0) =
(

0 B(0)

0 A(0)

)
.

��
We now will consider the reduction problem for Eq. (1) in the case that M0 is a

neighborhood of 0 in a subspace V ⊆ R
n+m . We may—and will—assume that V is

given as in Lemma 2(a), and

h(0) : U → R
n+m,

(
x
y

)

→

(
B(x)y + ∑

|i |≥2 bi (x)yi

A(x)y + ∑
|i |≥2 ai (x)yi

)
(2)

with A, B, ai and bi as in Lemma 2(b). Furthermore we fix notation by setting

h(1) : U → R
n+m,

(
x
y

)

→

(
u(x) + ∑

|i |≥1 ui (x)yi

v(x) + ∑
|i |≥1 vi (x)yi

)
(3)

with u, v, ui and vi analytic vector-valued functions of appropriate size.

Theorem 2 Let system (1) be such that h(0) is as in (2), and h(1) is as in (3). Assume
that (i) and (ii) hold in a neighborhood of 0 (equivalently, every eigenvalue of A(0)

has real part < 0). Then the Tikhonov-Fenichel reduction of the system with respect
to the small parameter ε is given by

ẋ = ε ·
(

u(x) − B(x)A(x)−1v(x)
)

, x near 0, on y = 0. (4)

Proof Let V denote the subspace defined by y = 0. On this subspace the Jacobian of
h(0) is given by
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Dh(0)(x, 0) =
(

0 B(x)

0 A(x)

)
. (5)

Because (i) and (ii) are satisfied near 0, Theorem 1 is applicable for x near 0, and there
remains to compute the kernel-image decomposition.

Because A(x) has full rank m, and the first n columns of Dh(0)(x, 0) are identically
zero, the rank of Dh(0)(x, 0) is also equal to m and the dimension of its kernel equals
n. The standard basis vectors e1, . . . , en are elements of the kernel, and therefore

Ker
(

Dh(0)(x, 0)
)

= 〈e1, . . . , en〉 .

Moreover the image is given by

Im
(

Dh(0)(x, 0)
)

=
{(

B(x)

A(x)

)
· w; w ∈ R

m
}

.

Given an arbitrary z :=
(

u∗
v∗

)
∈ R

n+m , there exist uniquely determined

z0 ∈ 〈e1, . . . , en〉 und w0 ∈ R
m such that

(
u∗
v∗

)
= z0 +

(
B(x) · w0
A(x) · w0

)
(6)

is the kernel-image decomposition of z with respect to Dh(0)(x, 0).

Since the last m entries of z0 =
(

z∗
0

0

)
vanish, one may rewrite the last m entries

of (6) to obtain

v∗ = A(x)w0 ⇔ w0 = A(x)−1v∗.

Using this identity, the first n entries of (6) yield

u∗ = z∗
0 + B(x)w0

= z∗
0 + B(x)A(x)−1v∗.

Thus the desired projection with respect to Dh(0)(x, 0) is given by

z∗
0 = u∗ − B(x)A(x)−1v∗.

Substitution of h(1)(x, 0) leads to the expression (4) for the reduced system. ��
Remarks
(a) It is also possible to derive this result from Fenichel [5], Lemma 5.4, or from

Stiefenhofer [17], Eq. (2.13).
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(b) In particular this result justifies, a posteriori, a QSS assumption for the variables
y as ε → 0: Locally, after a short initial phase, the reduced system provides a
good approximation to the dynamics of (1) for an extended time interval, and one
has y ≈ 0 as well as ẏ ≈ 0. But it should be emphasized that we did not assume
the variables y to be “fast” at the outset. Indeed, no initial distinction was made
between slow and fast variables: Theorem 2 requires an assumption concerning
the “small parameter”, and an assumption that one component of the zero set of
h(0) is a vector subspace. The variables x and y are then chosen with respect to
this subspace, according to Lemma 2.

(c) In the present paper we will not address the question how a QSS assumption can
lead to the identification of a suitable “small parameter”. It should be emphasized
that this is an important and nontrivial first step in the analysis. See for instance
Segel and Slemrod [16], Schauer and Heinrich [13], and also [10,11]. But one
should note that QSS assumptions have to be tested for consistency, and this topic
will be taken up in the present paper.

(d) The ad hoc QSS reduction of (1) with respect to the slow variable set y, given
(2) and (3), thus setting “ẏ = 0”, requires an explicit solution of the implicit
equation

0 = A(x)y +
∑
|i |≥2

ai (x)yi + ε · v(x) +
∑
|i |≥1

vi (x)yi + · · · (7)

for y, which is then substituted into the differential equation for x in (1). Solving this
equation may not be possible or feasible.

Generally the ad-hoc procedure will yield a reduction different from the Tikhonov-
Fenichel approach. The procedure suffers from the theoretical problem of unresolved
convergence issues as well as frequently from the practical drawback of having to
solve Eq. (7). However, in some settings (including, as it turns out, very familiar ones)
the Tikhonov-Fenichel approach and the ad hoc method provide the same reduction.
We will discuss this in the application-relevant setting of reaction equations involving
only first and second order reactions. Thus we consider system (1) in the following
special form:

ẋ = B(x)y + p(y) + ε · (u(x) + ũ(x, y)) ,

ẏ = A(x)y + q(y) + ε · (v(x) + ṽ(x, y))
(8)

with p and q homogeneous polynomials of degree 2, u and v polynomials of degree
≤ 2, and ũ, ṽ polynomials of degree ≤ 2 with ũ(x, 0) = ṽ(x, 0) = 0. The
Tikhonov-Fenichel reduction of this system is still given by

ẋ = ε ·
(

u(x) − B(x)A−1(x)v(x)
)

.
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Corollary 1 Assume the setting of (8). If p = 0, q = 0, ũ = 0 and ṽ = 0 then the
ad-hoc reduction from the QSS assumption for y and the Tikhonov-Fenichel reduction
coincide.

Proof To obtain the ad-hoc reduction, solve (7), which simplifies to

0 = A(x)y + ε · v(x),

substitute and compare results. ��
Remarks One should emphasize that Corollary 1 describes an exceptional case. An
ad-hoc reduction can generally not be computed in closed form. Even if a closed-form
computation is manageable, the result is usually more complicated than the one given
by Tikhonov-Fenichel.

It is a frequent phenomenon that ad hoc and Tikhonov yield the same reduction
if certain (product forming) reactions are irreversible, but not in the reversible set-
ting (which is more realistic and more appropriate; see e.g. Keener and Sneyd [8]).
Corollary 1 provides a partial explanation. In the following sections we will discuss a
number of relevant examples and derive reduced equations for the reversible setting;
in most cases the expressions for the reduced systems seem to be unavailable in the
literature.

3 Applications

In this section we discuss a number of applications. As the reader will notice, all of
these are related to well-known standard models, mostly taken from the monograph
by Keener and Sneyd [8]. This is a deliberate choice, to make the point that Theorem 2
is relevant and provides new information even in familiar settings. We will not include
a discussion of appropriate small parameters here, but rather start with a working
hypothesis for ε, to be justified a posteriori. Readers will notice that we do not employ
the customary method of introducing scaled variables. There is no doubt that this is an
important tool, but it seems more relevant for quantitative estimates than for limiting
processes. Moreover, scaling and limiting processes need to be defined carefully, as
is indicated by Sect. 4 below.

3.1 Reversible Michaelis–Menten

The Michaelis–Menten reaction was treated in detail via the Tikhonov-Fenichel
approach in [12]. We use it here as a benchmark example, and also to discuss variants
and modifications that are used to justify the familiar QSS reduction. The equations
for substrate s and complex c are given by

ṡ = − k1e0s + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c + k−2(e0 − c)(s0 − s − c),

(9)
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with nonnegative initial values c(0) = 0 and s(0) = s0. The rate constants ki will
all be assumed > 0 (except for k−2 ≥ 0), and s0 > 0, resp. e0 > 0 denote initial
concentrations for substrate, resp. enzyme.

If one considers QSS for the complex C then a suitable “small parameter” (found
heuristically by Segel and Slemrod [16] via time scale arguments) in the irreversible
case k−2 = 0 is given by

ε = e0

s0 + M
with M = k−1 + k2

k1
.

The discussion in [11] shows that this remains an appropriate choice when k−2 is
small. If one considers only scenarios with bounded s0 (and M), and one is primarily
interested in the limiting case ε → 0, then one may just as well choose ε = e0.
Rewriting (9) yields

ṡ = (k1s + k−1)c + ε(−k1s),
ċ = −(k1s + k−1 + k2 − k−2(s0 − s))c + k−2c2 + ε(k1s + k−2(s0 − s − c)).

In the irreversible case (i.e., k−2 = 0) Corollary 1 applies, and the familiar result of
the ad hoc method coincides with the Tikhonov-Fenichel reduction. But for k−2 > 0
the ad hoc method leads to a quadratic equation for c as a function of s, hence the
right-hand side of the reduced equation involves square roots. On the other hand the
reduction according to (4) yields a reduced equation with rational right-hand side. It
is given by

ṡ = −e0 · s(k1k2 + k−1k−2) − k−1k−2s0

k1s + k−1 + k2 + k−2(s0 − s)
.

We refer to [12] for more details. The right-hand side of the reduced equation corre-
sponds to Eq. (2.20) ff. in Heinrich and Schuster [7], p. 17, which (in our notation) is
given by

ṡ = −e0 · k1k2s − k−1k−2 p

k1s + k−1 + k2 + k−2 p
.

This reduces to the previous equation if one uses (heuristically) the conservation law
s + c + p = s0 and recalls that c = 0 on the slow manifold. But such a step is not
mentioned in [7], and thus Heinrich and Schuster do not arrive at a reduced differential
equation for one function. The authors note, however, that in the case of zero product
concentration one obtains the expression for irreversible Michaelis–Menten.

Keener and Sneyd [8], in Section 1.4.5 obtain the same relation and the same
conclusion for the reversible expression, and then justify setting p = 0 by invoking
continuous removal of product. But it seems inconsistent to start with a model that
presumes no removal of product, and introduce the removal assumption later on. We
will take the more natural approach here to assume product removal already in the full
system. Thus we start with the equations
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ė = −k1es + (k−1 + k2)c − k−2 pe,

ṡ = −k1es + k−1c,

ċ = k1es − (k−1 + k2)c + k−2 pe,

ṗ = k2c − k−2 pe − αp,

the product removal rate being assumed proportional to p with a parameter α > 0. The
system admits the first integral e + c = e0 (but there exists no second, independent
linear first integral), and we obtain the three-dimensional system

ṡ = −k1e0 + (k1s + k−1)c,
ċ = k1e0s − (k1s + k−1 + k2)c + k−2(e0 − c)p,

ṗ = k2c − k−2 p(e0 − c) − αp.

Designating the small parameter e0, this fits into the mold of Eq. (8); we obtain

ṡ = (
k−1 + k1s 0

) (
c
p

)
+ e0(−k1s),

˙(
c
p

)
=

(−k1s − k−1 − k2 0
k2 −α

) (
c
p

)
+

(−k−2cp
k−2cp

)

+ e0

((
k1s
0

)
+

(
k−2 p

−k−2 p

))
.

By Theorem 2 we obtain the reduced system

ṡ = −k1s − (
k−1 + k1s 0

) (−k1s − k−1 − k2 0
k2 −α

)−1 (
k1s
0

)

and a straightforward computation shows that this is indeed the same expression as
for the irreversible Michaelis–Menten reaction. Note that the factor α cancels out in
the course of the computation. One also readily verifies that a nonlinear removal rate
function ρ(p) = α · p + · · ·, with the dots standing for higher order terms in p, leads
to the same reduction. Thus the conclusion stated in [8] does indeed hold, but the
basis of the derivation given here may be seen as more solid. One also sees that a
QSS assumption for both c and p is justified (cf. Remark (a) following Theorem 2).
However, reduction by the ad hoc method would again produce different results.

3.2 Competitive inhibition

The reaction mechanism of competitive inhibition (see Keener and Sneyd [8], Sub-
section 1.2.3) is given as follows:
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E + S
k1�

k−1
C1

k2�
k−2

E + P

E + I
k3�

k−3
C2.

Thus in addition to the basic Michaelis–Menten ingredients there is a substance I
(inhibitor) which can also bind to the enzyme. Since an enzyme-inhibitor complex
can no longer bind substrate, formation of product is impeded.

We are only interested in nonnegative solutions. The relevant initial data are given
by e(0) = e0 > 0, s(0) = s0 > 0, i(0) = i0 > 0 and c1(0) = c2(0) = p(0) = 0.
Assuming mass action kinetics and employing the conservation laws e+c1 +c2 = e0,
s + c1 + p = s0 and i + c2 = i0 to eliminate e, i and p, one obtains the following
system:

ṡ = (
k−1 + k1s k1s

) (
c1
c2

)
+ e0(−k1s),

˙(
c1
c2

)
=

(−k1s − k−1 − k−2(s0 − s) − k2 −k1s − k−2(s0 − s)
−k3i0 −k3i0 − k−3

)(
c1
c2

)

+
(

k−2(c2
1 + c1c2)

k3(c1c2 + c2
2)

)
+ e0

((
k1s − k−2(s − s0)

k3i0

)
+

(−k−2c1
−k3c2

))
.

We designate ε = e0 as small parameter. Then the zero set Y of h(0) contains as a
component the subspace

V = {(s, 0, 0); s ∈ R}
and Theorem 2 is applicable. Since one has s ≤ s0 by initial conditions and conser-
vation laws, the matrix

A(s) =
(−k1s − k−1 − k−2(s0 − s) − k2 −k1s − k−2(s0 − s)

−k3i0 −k3i0 − k−3

)

has negative trace and positive determinant

det A(s) = k−3(k1s + k−1) + (k2 + k−1)k3i0 + k2k−3 + k−2k−3(s0 − s).

By a familiar special case of the Hurwitz-Routh criterion (generally see e.g.
Gantmacher [6], Chapter V (6)) one sees that both eigenvalues of A(s) have neg-
ative real parts. We obtain the reduced system

ṡ = e0 ·
(

−k1s − (k−1 + k1s, k1s) · A(s)−1 ·
(

k1s − k−2(s − s0)

k3i0

))

or

ṡ = −e0 (k−3 (−k−2k−1(s0 − s) + k2k1s))

det A(s)
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for 0 ≤ s ≤ s0. For k−2 = 0 this expression specializes to the one derived by the
ad-hoc method in [8] (as guaranteed by Corollary 1), while the general reduction for
the non-reversible case seems to be new.

A posteriori one sees that the choice of the small parameter e0 is consistent with
Tikhonov-Fenichel, and one also sees that a quasi-steady state assumption for com-
plexes C1 and C2 is justified for small e0. We note that in case k−2 > 0 the ad hoc
method leads to a rather complicated system of quadratic equations for c1 and c2 as
functions of s. Although this system can be solved in principle by deriving a degree
four equation for c1 and using Cardano’s formula, and similarly for c2, the discussion
of the reduced equation seems hardly feasible. In contrast, the reduction determined
via Tikhonov-Fenichel is easy to discuss qualitatively, and the role of the parameters is
transparent: The terms containing i0 increase the denominator of the right-hand side,
and thus substrate degradation will be delayed. The effect of k−2 > 0 leads essentially
to a shift of the stationary point from 0 to a positive value. We note that incorporating
product removal, as in the Michaelis–Menten example, will lead to the expression for
the irreversible case.

3.3 Allosteric inhibition

The underlying reaction scheme of allosteric inhibition is as follows:

E + S
k1�

k−1
C1

k2�
k−2

E + P E + I
k3�

k−3
C2

C2 + S
k1�

k−1
C3 C1 + I

k3�
k−3

C3.

See Keener and Sneyd [8], Subsection 1.2.3 for more details. As above, in contrast
to [8] we include reversible product formation, allowing k−2 ≥ 0. In this model, an
inhibitor bound to the enzyme does not affect the binding of substrate. The catalytic
formation of product is slowed down, however, because the enzyme-substrate-inhib-
itor complex cannot degrade directly to yield product. Again we choose e0 as “small
parameter”.

The relevant initial conditions are given by e(0) = e0 > 0, s(0) = s0 > 0, i(0) =
i0 > 0 and c1(0) = c2(0) = c3(0) = p(0) = 0. With mass action kinetics one
obtains a seven-dimensional differential equation. Elimination of e, p and i via the
conservation laws s + p + c1 + c3 = s0, i + c2 + c3 = i0 and e + c1 + c2 + c3 = e0
yields

ṡ = (k−1 + k1s, 0, k1s + k−1)

⎛
⎝c1

c2
c3

⎞
⎠ + e0(−k1s)

˙⎛
⎝c1

c2
c3

⎞
⎠ = A(s) ·

⎛
⎝c1

c2
c3

⎞
⎠ +

⎛
⎝k−2(c1 + c2 + c3)(c1 + c3) + k3c1(c2 + c3)

k3(c1 + c2 + c3)(c2 + c3)

−k3c1(c2 + c3)

⎞
⎠
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+ e0

⎛
⎝

⎛
⎝k1s + k−2(s0 − s)

k3i0
0

⎞
⎠ +

⎛
⎝−k−2(c1 + c3)

−k3(c2 + c3)

0

⎞
⎠

⎞
⎠

The matrix

A(s) =
⎛
⎝α11(s) −k1s − k−2(s0 − s) −k1s − k−2(s0 − s) + k−3

−k3i0 −k3i0 − k−3 − k1s −k3i0 + k−1
k3i0 k1s −k−3 − k−1

⎞
⎠

where we abbreviated

α11(s) = −k1s − k−1 − k−2(s0 − s) − k2 − k3i0,

admits the eigenvalue −(k3i0 + k−3), as direct inspection shows. The characteristic
polynomial is equal to

χ(τ) = (τ + k−3 + k3i0) · (τ 2 + a1τ + a2),

with abbreviations

a1 = k3i0 + k−3 + 2(k1s + k−1) + k2 + k−2(s0 − s),
a2 = (k1s + k−1)(k3i0 + k−3 + k1s + k−1) + (k1s + k−1 + k−3)·

(k2 + k−2(s0 − s))

Since s ≤ s0 throughout the reaction, a1 and a2 are positive, and by the Hurwitz-Routh
criterion the quadratic polynomial admits only zeros with negative real part. One has

det A(s) = −(k3i0 + k−3)((k1s + k−1)(k3i0 + k−3 + k2 + k1s + k−1)

+ k2k−3 + (s0 − s)k−2(k1s + k−3 + k−1)).

In particular we have det A(s) < 0 for 0 ≤ s ≤ s0. Theorem 2 is applicable and we
obtain the reduced equation

ṡ = e0k−3(k2k1s − k−2k−1(s0 − s))(k−1 + k−3 + k1s + k3i0)

det A(s)
, 0 ≤ s ≤ s0.

on the subspace V = {(s, 0, 0, 0); s ∈ R} which is a component of the zero set Y of
h(0). This equation has rational right-hand side with quadratic numerator and denom-
inator. For the irreversible case k−2 = 0 this reduced equation is the same as given in
Keener and Sneyd [8], Section 1.5, by the ad hoc method (due to Corollary 1). While
computations are a bit more involved here, the procedure is still straightforward. The
ad-hoc approach seems no longer manageable in the reversible scenario.

Again one obtains an a posteriori justification for QSS of the three complexes
when e0 is small, and again incorporating product removal ab initio will lead to the
expression for the irreversible case.
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3.4 A variant of the Michaelis–Menten model

The following three-stage mechanism for an enzyme-catalyzed reaction, a variant of
the basic Michaelis–Menten model, can for instance be found in Heinrich and Schuster
[7], p. 18f. In contrast to the basic model one distinguishes an enzyme-substrate com-
plex C1 and an enzyme-product complex C2 which change to each other reversibly.
Thus we have the scheme

E + S
k1�

k−1
C1

k2�
k−2

C2
k3�

k−3
E + P

At the start of the reaction we assume that only enzyme e(0) = e0 > 0 and substrate
s(0) = s0 > 0 are present. Again, the small parameter will be chosen as e0.

Mass action kinetics in conjunction with the conservation laws e + c1 + c2 = e0
and s + c1 + c2 + p = s0 leads to the following differential equation system for s, c1
and c2:

ṡ = (k−1 + k1s, k1)

(
c1
c2

)
+ e0(−k1s)

˙(
c1
c2

)
= A(s) ·

(
c1
c2

)
+

(
0

k−3(c1 + c2)
2

)

+ e0

((
k1s

−k−3s + k−3s0

)
+

(
0

−k−3(c1 + c2)

))
.

Since s ≤ s0 throughout the course of the reaction, the matrix

A(s) :=
( −k1s − k−1 − k2 −k1s + k−2

k2 − k−3s0 + k−3s −k−2 − k−3s0 + k−3s − k3

)

has negative trace and positive determinant

det A(s) = k−3(s0 − s)(k−1 + k2 + k−2) + (k3 + k−2)(k1s + k−1) + k1k2s.

The zero set Y of h(0) has the subspace V := {
(s, 0, 0, ) ∈ R

3
}

as a component, and
Theorem 2 is applicable. The reduced equation is given by

ṡ = −e0
−k−3k−1k−2(s0 − s) + k3k1k2s

det A(s)

for 0 ≤ s ≤ s0. The structure of this reduced equation (the right-hand side is a
rational function with linear numerator and denominator) is the same as for the
basic Michaelis–Menten mechanism; this is also noted in [7]. (As in the case of
the basic Michaelis–Menten system, Heinrich and Schuster stop short of determining
a reduced system explicitly.) Again, a QSS assumption for both complexes is justified
for small e0.
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3.5 Cooperativity

In this section we consider an extension of the Michaelis–Menten model to an enzyme
with m identical binding sites. We denote by C0 = E the enzyme with no substrate
bound, while the enzyme with 1, . . . , m substrate molecules bound will be denoted by
C1, . . . , Cm respectively. The irreversible system with two binding sites is discussed in
Keener and Sneyd [8], Subsection 1.2.4, in a manner similar to the Michaelis–Menten
system. The extension to reversible product formation in this particular case was given
in [12], Sect. 4. Generally, with reversible product formation we have the following
reaction scheme.

S + C0
k1�

k−1
C1

k2�
k−2

C0 + P

S + C1
k3�

k−3
C2

k4�
k−4

C1 + P

...

S + Cm−1
k2m−1�

k−(2m−1)

Cm
k2m�

k−2m
Cm−1 + P

By mass action kinetics one obtains the following system of differential equations.

ṡ = ∑m−1
j=0

(
k−(2 j+1)c j+1 − k2 j+1c j s

)
,

ċ0 = k−1c1 − k1c0s + k2c1 − k−2c0 p,

ċl = k2l−1cl−1s − k−(2l−1)cl − k2l cl + k−(2l+1)cl+1 − k2l+1cls
+ k2(l+1)cl+1 + k−2l cl−1 p − k−2(l+1)cl p for 1 ≤ l ≤ m − 1,

ċm = k2m−1scm−1 − k−(2m−1)cm − k2mcm + k−2mcm−1 p,

ṗ = ∑m−1
j=0

(
k2 j+2c j+1 − k−2( j+1)c j p

)
.

We assume that initially only the concentrations of unbound enzyme and substrate are
nonzero: c0(0) = e0 > 0 and s(0) = s0 > 0. Again e0 will be our working choice of
small parameter. Moreover we use the conservation laws to eliminate

c0 = e0 −
m∑

j=1

c j und p = s0 − s −
m∑

j=1

jc j .

We introduce some abbreviations: Set

A1(s)=

⎛
⎜⎜⎜⎜⎜⎜⎝

−k−1 − k2 − k3s k−3 + k4 −k1s −k1s · · · −k1s
k3s −k−3 − k4 − k5s k−5 + k6 0 · · · 0
0 k5s −k−5 − k6 − k7s k−7 + k8 · · · 0

0 0
. . .

. . .
. . . 0

...
...

. . .
. . .

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎠

123



1510 J Math Chem (2012) 50:1495–1513

and

A2(s)=

⎛
⎜⎜⎜⎜⎜⎜⎝

−(k−2 + k−4)(s0 − s) −k−2(s0 − s) · · · · · · · · · −k−2(s0 − s)
k−4(s0 − s) −k−6(s0 − s) 0 0 · · · 0

0 k−6(s0 − s) −k−8(s0 − s) 0 · · · 0

0 0
. . .

. . .
. . . 0

...
...

. . .
. . .

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and

A(s) = A1(s) + A2(s).

Moreover we define

B(s) = (
(k−1 − k3s) (k−3 − k5s) · · · k−2m+1

)
, u(s) = −k1s

and

v(s) =

⎛
⎜⎜⎜⎝

k1s + k−2(s0 − s)
0
...

0

⎞
⎟⎟⎟⎠ , ṽ(c) =

⎛
⎜⎜⎜⎝

−k−2
∑m

j=1 jc j

0
...

0

⎞
⎟⎟⎟⎠

and finally

q(c) =

⎛
⎜⎜⎜⎜⎝

k−4c1
∑m

j=1 jc j + k−2

(∑m
j=1 jc j

) (∑m
j=1 c j

)
(k−6c2 − k−4c1)

∑m
j=1 jc j

...

(k−2(m+1)cm − k−2mcm−1)
∑m

j=1 jc j

⎞
⎟⎟⎟⎟⎠ , c =

⎛
⎜⎝

c1
...

cm

⎞
⎟⎠

Then the system can be written in the form

ṡ = B(s) · c + e0 · u(s)
ċ = A(s) · c + q(c) + e0 · (v(s) + ṽ(c)) .

It seems arduous to discuss the spectrum of A(s) for all 0 ≤ s ≤ s0, but one can readily
see that, at least for s0 not too big, all eigenvalues of A(s) do have negative real part for
small s: Indeed, A1(0) is an upper triangular matrix with negative diagonal elements,
and A2(0) = s0 · A∗

2(0), whence A(0) has only eigenvalues with negative real part
for sufficiently small s0. We will be satisfied with this relatively weak result, since it
ensures consistency and local applicability of the reduction. The relevant component
of the zero set Y of h(0) is the subspace
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{(s, 0, . . . , 0); s ∈ R}

and the reduction is given by

ṡ = e0 ·
(

u(s) − B(s)A(s)−1v(s)
)

0 ≤ s ≤ s0. Since all entries of A(s), B(s), u(s) and v(s) are of degree ≤ 1 in s, one
sees that the right-hand side of this equation is rational, with denominator det A(s)
generically of degree m, and numerator of degree ≤ m +1. (For small m computations
show that the numerator is actually of degree ≤ m; this is likely the case for all m.)
Once more, incorporating product removal in the model ab initio will lead to the same
reduction as the irreversible system.

4 QSS without Tikhonov?

It is not obvious whether a quasi-steady state assumption, if justified, must necessarily
lead to a singular perturbation setting. The initial quasi-steady state arguments were
(obviously, from a historical perspective) not based on Tikhonov’s theory, or even
on small parameter considerations. Schauer and Heinrich [13] use a line of argument
which is essentially different from “slow-fast” considerations (see also [11]). It seems
that only with the work of Segel and Slemrod [16] time scale estimates and time scale
arguments became the established method to identify “small parameters” for QSS.
But these time-scale arguments are at least in part of heuristic nature, and therefore
additional justification is necessary.

In this short section we show by one example that checking the hypotheses for
Tikhonov’s theorem may help avoid erroneus conclusions. We discuss the reverse
QSSA (rQSSA) (see Segel and Slemrod [16], Schnell and Maini [15]) for the irrevers-
ible Michaelis–Menten system

ṡ = − k1e0s + (k1s + k−1)(s0 − (s + p)),

ṗ = k2(s0 − (s + p)).

In rQSS substrate is assumed to be in steady state after a short initial phase, and appre-
ciable formation of product should begin only after this initial phase. From a time
scale discussion, Segel and Slemrod [16] obtain the condition

δ := k−1

k1e0
� 1

for rQSS to hold. In [12] it was shown that the hypotheses of Tikhonov’s theorem are
satisfied if 1/e0 → 0 while k−1 remains bounded and k1 remains bounded away from
0. But it should be emphasized that δ → 0 generally implies neither the hypotheses
for Tikhonov-Fenichel nor quasi-steady state for substrate. Indeed, assume that k1 and
e0 remain bounded and bounded away from 0, and consider the case k−1 → 0. This
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Fig. 1 Numerical example with e0 = s0 = 1, k1 = k2 = 1 and k−1 = 10−6. The graphs are for substrate
(full), product according to the two-dimensional system (dashed), and product according to the ad-hoc
reduction (dotted)

implies δ → 0, but ε = k−1 is now the “small parameter”. Rewriting the system in
the appropriate form

ṡ = − k1e0s + k1s(s0 − (s + p)) + ε(s0 − (s + p)),

ṗ = k2(s0 − (s + p)),

one sees that h(0) now has only an isolated stationary point (0, s0), and the hypotheses
for Tikhonov-Fenichel are not fulfilled. Moreover, no rQSS is detectable in the fol-
lowing (arbitrarily chosen) numerical example, where all parameters were set equal
to 1, except for k−1 = 10−6. Figure 1 shows that, first and foremost, degradation of
substrate and formation of product occur at about the same rate, and substrate does
not quickly approach quasi-steady state prior to appreciable product formation. Sec-
ond, one sees that the “approximate” product formation rate according to the ad hoc
reduction, is hardly useful.

A general cautionary comment can be drawn from this example: Scaling fre-
quently involves the lumping of several parameters into one “small parameter” (such as
δ = k−1/(k1e0)). This may cause problems, since various ways of letting δ approach
0 may lead to different results. By extension, this also applies to the total QSSA
introduced by Borghans et al. [3]. A more detailed case-by-case investigation seems
necessary in such scenarios.
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